青鸟异闻录

首页 >> 都市小说 >> 青鸟异闻录(章节目录)
亲爱的书友,您现在访问的是转码页面,会导致更新不及时及无法正常下载,请访问真实地址:http://m.shudai.cc/238041/

第二百九十八章(1/6)

上一章 目录 下一页:(1/6)

关灯 护眼 舒适     字体:

墓碑上的蝌蚪文,已经没有办法辨认了,兰陵不认识,古青鸟也不认识。

古青鸟好奇道:“这个人既然留下了这个墓碑,难道不是想让人知道他是谁,到底在这儿留下了什么吗?但是用蝌蚪文写墓志铭,谁能看得懂?”

“那就只有一种可能了。”兰陵说道:“就是这个人想要留下的东西只有专门的人看得懂,我是不知道这个专门的人到底是谁,但是绝对不是我们俩。”

古青鸟点点头,表示好像是这样:“但是我们现在怎么找到通往那个空间的门户?”

兰陵想了想说:“周围一定会有什么痕迹,能量的痕迹或者什么卡关的痕迹,我们好好找一找。”

事到如今,大概也就只能这样了,古青鸟和兰陵分开来,沿着坑洞的边缘朝两个方向一边走一边找,寻找一些线索。

很快地,古青鸟就发现,这个坑洞好像并不是一个规则的圆形,而是一个很多边的多边形。

由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。

所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。“圆,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在(2019年)所熟悉的公式。

为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。数学意义

“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。

即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率。

刘徽发明“割圆术”是为求“圆周率”。那么圆周率究竟是指什么呢?它其实就是指“圆周长与该圆直径的比率”。很幸运,这是个不变的“常数”!我们人类借助它可以进行关于圆和球体的各种计算。如果没有它,那么我们对圆和球体等将束手无策。同样,圆周率数值的“准确性”,也直接关乎到我们有关计算的准确性和精确度。这就是人类为什么要求圆周率,而且要求得准的原因。

根据“圆周长/圆直径=圆周率”,那么圆周长=圆直径*圆周率=2*半径*圆周率(这就是我们熟悉的圆周长=2π

的来由)。因此“圆周长公式”根本就不用背的,只要有小学知识,知道“圆周率的含义”,就可自行推导计算。也许大家都知道“圆周率和π”,但它的“含义及作用”往往被忽略,这也就是割圆术的意义所在。

由于“圆周率=圆周长/圆直径”,其中“直径”是直的,好测量;难计算精确的是“圆周长”。而通过刘徽的“割圆术”,这个难题解决了。只要认真、耐心地精算出圆周长,就可得出较为精确的“圆周率”了。——众所周知,在中国祖冲之最终完成了这个工作。

发展历史编辑

中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为3:1)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。

在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。

按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法

喜欢青鸟异闻录请大家收藏:(m.shudai.cc),书呆网更新速度最快。

状态提示:第二百九十八章
第1页完,继续看下一页
上一章 目录 下一页:(1/6)
返回顶部
站内强推 亮剑之给孔捷当警卫 超人的赛亚人弟弟 夏有乔木:雅望天堂 我被亲弟弟强制爱了 神庭玉 元素 斗破苍穹 总裁的心尖暖妻 穷爸爸富爸爸 星环使命
经典收藏 蛇术士 斗罗:我为了比比东硬刚千道流 魏晋干饭人 生死帝尊 鹰视狼顾 大明之我是朱祁镇 大唐从挽救长孙皇后开始 逆天太子爷 战神爹爹:团宠王妃三岁半 穿越到明朝当举人
最近更新 网游之末日黄昏 冥界之花冥冥 亚炎纪 你这该死的温柔 女神的无双高手 因为爱你而疼 梦回千转 煅魂:风流邪帝犯桃花 直播:女神家的哈士奇天秀 道白道兮泊月
青鸟异闻录 卿禹 - 青鸟异闻录 全文阅读 - 青鸟异闻录 txt下载 - 青鸟异闻录 最新章节" - 好看的都市小说小说