现代的军舰趋向自动化有两个原因。第一个原因大家比较熟悉,由于威胁从螺旋桨战机、pēn_shè机、次音速飞弹到超音速飞弹,目标越来越快,作战反应时间越来越短,以人力根本无法有效实施拦截。在这种情况下甚至不只武器操作,就连战术指示用人力来进行也嫌慢。所以新一代的自动战管系统都是根据预先写好的程序来执行拦截作业,从目标判别、选定到发射武器,全都由计算机进行,而人类乘员只负责执行高级战术或战略决策。
第二个原因就比较少人注意了。那就是人力成本逐年提高导致的财政压力增加造成的影响。例如目前一艘勃克级神盾驱逐舰造价十至十五亿美元,假设其350名乘员每人年薪平均为5万美元(底薪与各种航海加给、危险津贴等),又假设此军舰使用期限为30年,则在这30年内所需付出的人力成本便达5.25亿美元,已经是造价的1/3至1/2了。随著军舰装备的系统越来越先进,操作装备所需要的水兵素质与知识水平也就需要越高,如此所需付出的薪水自然也会随之水涨船高,故自动化以减少人力需求是必然的走向。即使身为海军中级军官负责作战指挥的船长不这么想,海军上层的将军面临预算压力也将不得不做出妥协,甚至即使海军高层将领不想压缩人力成本,但国会在削减预算上却是非常不遗余力而不会有丝毫的迟疑的。
以上两个理由在未来也会成为太空军舰减少人力需求的重要因素。然而对于太空军舰而言,原因并不只有上面那两项而已。太空战舰上减少人员编制有更实质的意义。首先,在太空航行导论里曾经提到过,基于太空中无阻力与惯性定律,限制太空船航程的并非燃料的多寡,而单纯在于其上乘原员的生理限制(以及心理限制)。将人员编制减少,则所需的空气、食物与水,以及维生系统所需投入的能量也就越少。反过来讲,若给定需求物资数量,则人员越少,能够维持的时间也就越长,船舰续航力自然会随之增加。
其次,现代海战中若船舰损毁沈没,只要不是在攻击中当场死亡,人员仍能有相当高的生还的机会。至少用救生艇可以漂流个数天,在某些情况下也可以期待敌舰的救援。但太空环境非常恶劣,船舰若被击毁,即使进入逃生舱,一旦氧气用完也会完蛋。此外由于舰队相对速度极高,敌舰即使想要救援也通常是有心无力。最后基于惯性法则,被击毁的舰艇与其射出的逃生舱将会等速(通常就是最大战速)持续前进远离基地,能获得救援的机会将极为渺茫。因此人越少,则船舰被击毁时,人命的损失也就越低。
最后一点,人力减低也有助于船舰的生存性。众所皆知,海面上的军舰若被击中破损则会漏水,若无法堵漏则最终会沈没。太空战舰则没有漏水的问题,但是增加了一个空气泄漏的可能性。如果人员减少,则由于需要的气密人员舱间的减少,这种情况发生的机率将会减低。
比如以一艘百万吨级、两千公尺长的战舰为例,若将乘员减少到数十名甚至十名以内,则可以将这些人员的起居舱与驾驶舱高度集中,构成大小只有数十公尺等级的乘员模块(或统称乘员舱),对其施以集中气密处理,并给予高度的结构设计安全考量(例如将乘员舱置于船身内部或较不易遭击中之处)与额外装甲保护。这样一来便省去了全舰气密的需求,大幅减低了空气泄漏的机会,而乘员舱也可以获得较佳的保护。又,若要实作人造重力(旋转制造的离心力),转动集中的乘员舱的设计也比转动全舰更简单,所消耗的能量也更低。又,深埋舰体内部的乘员舱将可以提供乘员更佳的辐射保护,这使乘员可在近恒星区域遭遇太阳闪焰、远地空域的高辐射行星周围,以及人为高辐射环境(如近距离核爆)中有更高的生存性。
此外这亦可以节省船舰的结构重量,因既然不需要全舰气密,则气密维持结构所需重量就可以大幅降低。平时难以避免的空气泄漏与船舰所需要携带的空气量也可以减少。最后,在没有空气的船舰其它部分(即船只99以上的空间),也就完全不会有发生火灾的可能性,因没空气自然烧不起来。
从以上的设定描述里面可以发现,类似钢弹影片里那种舰桥式的指挥塔是根本不会存在太空船上的。这类舰桥只是地球环境中为了获得更佳的视野(地球曲率的影响)的设计。在现代的军舰中,指挥官所在之处为战情中心(coer,cic),都是设计在船体内,由其它舷舱包覆而最不容易受损之处,舰桥只让航海官操舵之处。而太空军舰上乘员舱要获得外部影像很简单,即为侦测篇所提到的,直接透过光纤网络将船体外壳光感元件接收的影像即时投影在指挥舱屏幕上就可以了。甚至要把指挥舱做成全天周屏幕也不是问题,影像也可以在一旁做出矢量标示与注释,要进行任意区域定格放大等额外特殊处理也是可以的。
<喜欢太空航行与作战技术导论请大家收藏:(m.shudai.cc),书呆网更新速度最快。